| 1 | #ifndef MYCPP_GC_LIST_H
|
| 2 | #define MYCPP_GC_LIST_H
|
| 3 |
|
| 4 | #include <string.h> // memcpy
|
| 5 |
|
| 6 | #include <algorithm> // sort() is templated
|
| 7 |
|
| 8 | #include "mycpp/common.h" // DCHECK
|
| 9 | #include "mycpp/comparators.h"
|
| 10 | #include "mycpp/gc_alloc.h" // Alloc
|
| 11 | #include "mycpp/gc_builtins.h" // ValueError
|
| 12 | #include "mycpp/gc_mops.h" // BigInt
|
| 13 | #include "mycpp/gc_slab.h"
|
| 14 |
|
| 15 | // GlobalList is layout-compatible with List (unit tests assert this), and it
|
| 16 | // can be a true C global (incurs zero startup time)
|
| 17 |
|
| 18 | template <typename T, int N>
|
| 19 | class GlobalList {
|
| 20 | public:
|
| 21 | int len_;
|
| 22 | int capacity_;
|
| 23 | GlobalSlab<T, N>* slab_;
|
| 24 | };
|
| 25 |
|
| 26 | #define GLOBAL_LIST(name, T, N, array) \
|
| 27 | GcGlobal<GlobalSlab<T, N>> _slab_##name = {ObjHeader::Global(TypeTag::Slab), \
|
| 28 | {.items_ = array}}; \
|
| 29 | GcGlobal<GlobalList<T, N>> _list_##name = { \
|
| 30 | ObjHeader::Global(TypeTag::List), \
|
| 31 | {.len_ = N, .capacity_ = N, .slab_ = &_slab_##name.obj}}; \
|
| 32 | List<T>* name = reinterpret_cast<List<T>*>(&_list_##name.obj);
|
| 33 |
|
| 34 | template <typename T>
|
| 35 | class List {
|
| 36 | public:
|
| 37 | List() : len_(0), capacity_(0), slab_(nullptr) {
|
| 38 | }
|
| 39 |
|
| 40 | protected:
|
| 41 | // Used for ASDL subtypes with <. NOT even a shallow copy - it ALIASES thes
|
| 42 | // slab.
|
| 43 | explicit List(List* other)
|
| 44 | : len_(other->len_), capacity_(other->capacity_), slab_(other->slab_) {
|
| 45 | }
|
| 46 |
|
| 47 | public:
|
| 48 | // Implements L[i]
|
| 49 | T at(int i);
|
| 50 |
|
| 51 | // returns index of the element
|
| 52 | int index(T element);
|
| 53 |
|
| 54 | // Implements L[i] = item
|
| 55 | void set(int i, T item);
|
| 56 |
|
| 57 | // L[begin:]
|
| 58 | List* slice(int begin);
|
| 59 |
|
| 60 | // L[begin:end]
|
| 61 | List* slice(int begin, int end);
|
| 62 |
|
| 63 | // Should we have a separate API that doesn't return it?
|
| 64 | // https://stackoverflow.com/questions/12600330/pop-back-return-value
|
| 65 | T pop();
|
| 66 |
|
| 67 | // Used in osh/word_parse.py to remove from front
|
| 68 | T pop(int i);
|
| 69 |
|
| 70 | // Remove the first occurence of x from the list.
|
| 71 | void remove(T x);
|
| 72 |
|
| 73 | void clear();
|
| 74 |
|
| 75 | // Used in osh/string_ops.py
|
| 76 | void reverse();
|
| 77 |
|
| 78 | // Templated function
|
| 79 | void sort();
|
| 80 |
|
| 81 | // Ensure that there's space for at LEAST this many items
|
| 82 | void reserve(int num_desired);
|
| 83 |
|
| 84 | // Append a single element to this list.
|
| 85 | void append(T item);
|
| 86 |
|
| 87 | // Extend this list with multiple elements.
|
| 88 | void extend(List<T>* other);
|
| 89 |
|
| 90 | static constexpr ObjHeader obj_header() {
|
| 91 | return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
|
| 92 | }
|
| 93 |
|
| 94 | // Used by ASDL
|
| 95 | void SetTaken();
|
| 96 |
|
| 97 | int len_; // number of entries
|
| 98 | int capacity_; // max entries before resizing
|
| 99 |
|
| 100 | // The container may be resized, so this field isn't in-line.
|
| 101 | Slab<T>* slab_;
|
| 102 |
|
| 103 | // A list has one Slab pointer which we need to follow.
|
| 104 | static constexpr uint32_t field_mask() {
|
| 105 | return maskbit(offsetof(List, slab_));
|
| 106 | }
|
| 107 |
|
| 108 | DISALLOW_COPY_AND_ASSIGN(List)
|
| 109 |
|
| 110 | static_assert(sizeof(ObjHeader) % sizeof(T) == 0,
|
| 111 | "ObjHeader size should be multiple of item size");
|
| 112 | static constexpr int kHeaderFudge = sizeof(ObjHeader) / sizeof(T);
|
| 113 |
|
| 114 | #if 0
|
| 115 | // 24-byte pool comes from very common List header, and Token
|
| 116 | static constexpr int kPoolBytes1 = 24 - sizeof(ObjHeader);
|
| 117 | static_assert(kPoolBytes1 % sizeof(T) == 0,
|
| 118 | "An integral number of items should fit in first pool");
|
| 119 | static constexpr int kNumItems1 = kPoolBytes1 / sizeof(T);
|
| 120 | #endif
|
| 121 |
|
| 122 | // Matches mark_sweep_heap.h
|
| 123 | static constexpr int kPoolBytes2 = 48 - sizeof(ObjHeader);
|
| 124 | static_assert(kPoolBytes2 % sizeof(T) == 0,
|
| 125 | "An integral number of items should fit in second pool");
|
| 126 | static constexpr int kNumItems2 = kPoolBytes2 / sizeof(T);
|
| 127 |
|
| 128 | #if 0
|
| 129 | static constexpr int kMinBytes2 = 128 - sizeof(ObjHeader);
|
| 130 | static_assert(kMinBytes2 % sizeof(T) == 0,
|
| 131 | "An integral number of items should fit");
|
| 132 | static constexpr int kMinItems2 = kMinBytes2 / sizeof(T);
|
| 133 | #endif
|
| 134 |
|
| 135 | // Given the number of items desired, return the number items we should
|
| 136 | // reserve room for, according to our growth policy.
|
| 137 | int HowManyItems(int num_desired) {
|
| 138 | // Using the 24-byte pool leads to too much GC of tiny slab objects! So
|
| 139 | // just use the larger 48 byte pool.
|
| 140 | #if 0
|
| 141 | if (num_desired <= kNumItems1) { // use full cell in pool 1
|
| 142 | return kNumItems1;
|
| 143 | }
|
| 144 | #endif
|
| 145 | if (num_desired <= kNumItems2) { // use full cell in pool 2
|
| 146 | return kNumItems2;
|
| 147 | }
|
| 148 | #if 0
|
| 149 | if (num_desired <= kMinItems2) { // 48 -> 128, not 48 -> 64
|
| 150 | return kMinItems2;
|
| 151 | }
|
| 152 | #endif
|
| 153 |
|
| 154 | // Make sure the total allocation is a power of 2. TODO: consider using
|
| 155 | // slightly less than power of 2, to account for malloc() headers, and
|
| 156 | // reduce fragmentation.
|
| 157 | // Example:
|
| 158 | // - ask for 11 integers
|
| 159 | // - round up 11+2 == 13 up to 16 items
|
| 160 | // - return 14 items
|
| 161 | // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
|
| 162 | return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
|
| 163 | }
|
| 164 | };
|
| 165 |
|
| 166 | // "Constructors" as free functions since we can't allocate within a
|
| 167 | // constructor. Allocation may cause garbage collection, which interferes with
|
| 168 | // placement new.
|
| 169 |
|
| 170 | // This is not really necessary, only syntactic sugar.
|
| 171 | template <typename T>
|
| 172 | List<T>* NewList() {
|
| 173 | return Alloc<List<T>>();
|
| 174 | }
|
| 175 |
|
| 176 | // Literal ['foo', 'bar']
|
| 177 | // This seems to allow better template argument type deduction than a
|
| 178 | // constructor.
|
| 179 | template <typename T>
|
| 180 | List<T>* NewList(std::initializer_list<T> init) {
|
| 181 | auto self = Alloc<List<T>>();
|
| 182 |
|
| 183 | int n = init.size();
|
| 184 | self->reserve(n);
|
| 185 |
|
| 186 | int i = 0;
|
| 187 | for (auto item : init) {
|
| 188 | self->slab_->items_[i] = item;
|
| 189 | ++i;
|
| 190 | }
|
| 191 | self->len_ = n;
|
| 192 | return self;
|
| 193 | }
|
| 194 |
|
| 195 | // ['foo'] * 3
|
| 196 | template <typename T>
|
| 197 | List<T>* NewList(T item, int times) {
|
| 198 | auto self = Alloc<List<T>>();
|
| 199 |
|
| 200 | self->reserve(times);
|
| 201 | self->len_ = times;
|
| 202 | for (int i = 0; i < times; ++i) {
|
| 203 | self->set(i, item);
|
| 204 | }
|
| 205 | return self;
|
| 206 | }
|
| 207 |
|
| 208 | template <typename T>
|
| 209 | void List<T>::append(T item) {
|
| 210 | reserve(len_ + 1);
|
| 211 | slab_->items_[len_] = item;
|
| 212 | ++len_;
|
| 213 | }
|
| 214 |
|
| 215 | template <typename T>
|
| 216 | int len(const List<T>* L) {
|
| 217 | return L->len_;
|
| 218 | }
|
| 219 |
|
| 220 | template <typename T>
|
| 221 | List<T>* list_repeat(T item, int times);
|
| 222 |
|
| 223 | template <typename T>
|
| 224 | inline bool list_contains(List<T>* haystack, T needle);
|
| 225 |
|
| 226 | template <typename K, typename V>
|
| 227 | class Dict; // forward decl
|
| 228 |
|
| 229 | template <typename V>
|
| 230 | List<BigStr*>* sorted(Dict<BigStr*, V>* d);
|
| 231 |
|
| 232 | template <typename T>
|
| 233 | List<T>* sorted(List<T>* l);
|
| 234 |
|
| 235 | // L[begin:]
|
| 236 | template <typename T>
|
| 237 | List<T>* List<T>::slice(int begin) {
|
| 238 | return slice(begin, len_);
|
| 239 | }
|
| 240 |
|
| 241 | // L[begin:end]
|
| 242 | template <typename T>
|
| 243 | List<T>* List<T>::slice(int begin, int end) {
|
| 244 | SLICE_ADJUST(begin, end, len_);
|
| 245 |
|
| 246 | DCHECK(0 <= begin && begin <= len_);
|
| 247 | DCHECK(0 <= end && end <= len_);
|
| 248 |
|
| 249 | int new_len = end - begin;
|
| 250 | DCHECK(0 <= new_len && new_len <= len_);
|
| 251 |
|
| 252 | List<T>* result = NewList<T>();
|
| 253 | if (new_len == 0) { // empty slice
|
| 254 | return result;
|
| 255 | }
|
| 256 |
|
| 257 | result->reserve(new_len);
|
| 258 | DCHECK(result->slab_);
|
| 259 | // Faster than append() in a loop
|
| 260 | memcpy(result->slab_->items_, slab_->items_ + begin, new_len * sizeof(T));
|
| 261 | result->len_ = new_len;
|
| 262 |
|
| 263 | return result;
|
| 264 | }
|
| 265 |
|
| 266 | // Ensure that there's space for a number of items
|
| 267 | template <typename T>
|
| 268 | void List<T>::reserve(int num_desired) {
|
| 269 | // log("reserve capacity = %d, n = %d", capacity_, n);
|
| 270 |
|
| 271 | // Don't do anything if there's already enough space.
|
| 272 | if (capacity_ >= num_desired) {
|
| 273 | return;
|
| 274 | }
|
| 275 |
|
| 276 | // Slabs should be a total of 2^N bytes. kCapacityAdjust is the number of
|
| 277 | // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
|
| 278 | // List<int>.
|
| 279 | //
|
| 280 | // Example: the user reserves space for 3 integers. The minimum number of
|
| 281 | // items would be 5, which is rounded up to 8. Subtract 2 again, giving 6,
|
| 282 | // which leads to 8 + 6*4 = 32 byte Slab.
|
| 283 |
|
| 284 | capacity_ = HowManyItems(num_desired);
|
| 285 | auto new_slab = NewSlab<T>(capacity_);
|
| 286 |
|
| 287 | if (len_ > 0) {
|
| 288 | // log("Copying %d bytes", len_ * sizeof(T));
|
| 289 | memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
|
| 290 | }
|
| 291 | slab_ = new_slab;
|
| 292 | }
|
| 293 |
|
| 294 | // Implements L[i] = item
|
| 295 | template <typename T>
|
| 296 | void List<T>::set(int i, T item) {
|
| 297 | if (i < 0) {
|
| 298 | i = len_ + i;
|
| 299 | }
|
| 300 |
|
| 301 | if (0 > i || i >= len_) {
|
| 302 | throw Alloc<IndexError>();
|
| 303 | }
|
| 304 |
|
| 305 | slab_->items_[i] = item;
|
| 306 | }
|
| 307 |
|
| 308 | // Implements L[i]
|
| 309 | template <typename T>
|
| 310 | T List<T>::at(int i) {
|
| 311 | if (i < 0) {
|
| 312 | i = len_ + i;
|
| 313 | }
|
| 314 |
|
| 315 | if (0 > i || i >= len_) {
|
| 316 | throw Alloc<IndexError>();
|
| 317 | }
|
| 318 | return slab_->items_[i];
|
| 319 | }
|
| 320 |
|
| 321 | // L.index(i) -- Python method
|
| 322 | template <typename T>
|
| 323 | int List<T>::index(T value) {
|
| 324 | int element_count = len(this);
|
| 325 | for (int i = 0; i < element_count; i++) {
|
| 326 | if (items_equal(slab_->items_[i], value)) {
|
| 327 | return i;
|
| 328 | }
|
| 329 | }
|
| 330 | throw Alloc<ValueError>();
|
| 331 | }
|
| 332 |
|
| 333 | // Should we have a separate API that doesn't return it?
|
| 334 | // https://stackoverflow.com/questions/12600330/pop-back-return-value
|
| 335 | template <typename T>
|
| 336 | T List<T>::pop() {
|
| 337 | if (len_ == 0) {
|
| 338 | throw Alloc<IndexError>();
|
| 339 | }
|
| 340 | len_--;
|
| 341 | T result = slab_->items_[len_];
|
| 342 | slab_->items_[len_] = 0; // zero for GC scan
|
| 343 | return result;
|
| 344 | }
|
| 345 |
|
| 346 | // Used in osh/word_parse.py to remove from front
|
| 347 | template <typename T>
|
| 348 | T List<T>::pop(int i) {
|
| 349 | if (len_ < i) {
|
| 350 | throw Alloc<IndexError>();
|
| 351 | }
|
| 352 |
|
| 353 | T result = at(i);
|
| 354 | len_--;
|
| 355 |
|
| 356 | // Shift everything by one
|
| 357 | memmove(slab_->items_ + i, slab_->items_ + (i + 1), (len_ - i) * sizeof(T));
|
| 358 |
|
| 359 | /*
|
| 360 | for (int j = 0; j < len_; j++) {
|
| 361 | slab_->items_[j] = slab_->items_[j+1];
|
| 362 | }
|
| 363 | */
|
| 364 |
|
| 365 | slab_->items_[len_] = 0; // zero for GC scan
|
| 366 | return result;
|
| 367 | }
|
| 368 |
|
| 369 | template <typename T>
|
| 370 | void List<T>::remove(T x) {
|
| 371 | int idx = this->index(x);
|
| 372 | this->pop(idx); // unused
|
| 373 | }
|
| 374 |
|
| 375 | template <typename T>
|
| 376 | void List<T>::clear() {
|
| 377 | if (slab_) {
|
| 378 | memset(slab_->items_, 0, len_ * sizeof(T)); // zero for GC scan
|
| 379 | }
|
| 380 | len_ = 0;
|
| 381 | }
|
| 382 |
|
| 383 | // used by ASDL
|
| 384 | template <typename T>
|
| 385 | void List<T>::SetTaken() {
|
| 386 | slab_ = nullptr;
|
| 387 | len_ = 0;
|
| 388 | capacity_ = 0;
|
| 389 | }
|
| 390 |
|
| 391 | // Used in osh/string_ops.py
|
| 392 | template <typename T>
|
| 393 | void List<T>::reverse() {
|
| 394 | for (int i = 0; i < len_ / 2; ++i) {
|
| 395 | // log("swapping %d and %d", i, n-i);
|
| 396 | T tmp = slab_->items_[i];
|
| 397 | int j = len_ - 1 - i;
|
| 398 | slab_->items_[i] = slab_->items_[j];
|
| 399 | slab_->items_[j] = tmp;
|
| 400 | }
|
| 401 | }
|
| 402 |
|
| 403 | // Extend this list with multiple elements.
|
| 404 | template <typename T>
|
| 405 | void List<T>::extend(List<T>* other) {
|
| 406 | int n = other->len_;
|
| 407 | int new_len = len_ + n;
|
| 408 | reserve(new_len);
|
| 409 |
|
| 410 | for (int i = 0; i < n; ++i) {
|
| 411 | slab_->items_[len_ + i] = other->slab_->items_[i];
|
| 412 | }
|
| 413 | len_ = new_len;
|
| 414 | }
|
| 415 |
|
| 416 | inline bool CompareBigStr(BigStr* a, BigStr* b) {
|
| 417 | return mylib::str_cmp(a, b) < 0;
|
| 418 | }
|
| 419 |
|
| 420 | template <>
|
| 421 | inline void List<BigStr*>::sort() {
|
| 422 | if (slab_) {
|
| 423 | std::sort(slab_->items_, slab_->items_ + len_, CompareBigStr);
|
| 424 | }
|
| 425 | }
|
| 426 |
|
| 427 | inline bool CompareBigInt(mops::BigInt a, mops::BigInt b) {
|
| 428 | return a < b;
|
| 429 | }
|
| 430 |
|
| 431 | template <>
|
| 432 | inline void List<mops::BigInt>::sort() {
|
| 433 | std::sort(slab_->items_, slab_->items_ + len_, CompareBigInt);
|
| 434 | }
|
| 435 |
|
| 436 | // TODO: mycpp can just generate the constructor instead?
|
| 437 | // e.g. [None] * 3
|
| 438 | template <typename T>
|
| 439 | List<T>* list_repeat(T item, int times) {
|
| 440 | return NewList<T>(item, times);
|
| 441 | }
|
| 442 |
|
| 443 | // e.g. 'a' in ['a', 'b', 'c']
|
| 444 | template <typename T>
|
| 445 | inline bool list_contains(List<T>* haystack, T needle) {
|
| 446 | int n = len(haystack);
|
| 447 | for (int i = 0; i < n; ++i) {
|
| 448 | if (items_equal(haystack->at(i), needle)) {
|
| 449 | return true;
|
| 450 | }
|
| 451 | }
|
| 452 | return false;
|
| 453 | }
|
| 454 |
|
| 455 | template <typename V>
|
| 456 | List<BigStr*>* sorted(Dict<BigStr*, V>* d) {
|
| 457 | auto keys = d->keys();
|
| 458 | keys->sort();
|
| 459 | return keys;
|
| 460 | }
|
| 461 |
|
| 462 | template <typename T>
|
| 463 | List<T>* sorted(List<T>* l) {
|
| 464 | auto ret = list(l);
|
| 465 | ret->sort();
|
| 466 | return ret;
|
| 467 | }
|
| 468 |
|
| 469 | // list(L) copies the list
|
| 470 | template <typename T>
|
| 471 | List<T>* list(List<T>* other) {
|
| 472 | auto result = NewList<T>();
|
| 473 | result->extend(other);
|
| 474 | return result;
|
| 475 | }
|
| 476 |
|
| 477 | template <class T>
|
| 478 | class ListIter {
|
| 479 | public:
|
| 480 | explicit ListIter(List<T>* L) : L_(L), i_(0) {
|
| 481 | // Cheney only: L_ could be moved during iteration.
|
| 482 | // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
|
| 483 | }
|
| 484 |
|
| 485 | ~ListIter() {
|
| 486 | // gHeap.PopRoot();
|
| 487 | }
|
| 488 | void Next() {
|
| 489 | i_++;
|
| 490 | }
|
| 491 | bool Done() {
|
| 492 | // "unsigned size_t was a mistake"
|
| 493 | return i_ >= static_cast<int>(L_->len_);
|
| 494 | }
|
| 495 | T Value() {
|
| 496 | return L_->slab_->items_[i_];
|
| 497 | }
|
| 498 | T iterNext() {
|
| 499 | if (Done()) {
|
| 500 | throw Alloc<StopIteration>();
|
| 501 | }
|
| 502 | T ret = L_->slab_->items_[i_];
|
| 503 | Next();
|
| 504 | return ret;
|
| 505 | }
|
| 506 |
|
| 507 | // only for use with generators
|
| 508 | List<T>* GetList() {
|
| 509 | return L_;
|
| 510 | }
|
| 511 |
|
| 512 | private:
|
| 513 | List<T>* L_;
|
| 514 | int i_;
|
| 515 | };
|
| 516 |
|
| 517 | // list(it) returns the iterator's backing list
|
| 518 | template <typename T>
|
| 519 | List<T>* list(ListIter<T> it) {
|
| 520 | return list(it.GetList());
|
| 521 | }
|
| 522 |
|
| 523 | // TODO: Does using pointers rather than indices make this more efficient?
|
| 524 | template <class T>
|
| 525 | class ReverseListIter {
|
| 526 | public:
|
| 527 | explicit ReverseListIter(List<T>* L) : L_(L), i_(L_->len_ - 1) {
|
| 528 | }
|
| 529 | void Next() {
|
| 530 | i_--;
|
| 531 | }
|
| 532 | bool Done() {
|
| 533 | return i_ < 0;
|
| 534 | }
|
| 535 | T Value() {
|
| 536 | return L_->slab_->items_[i_];
|
| 537 | }
|
| 538 |
|
| 539 | private:
|
| 540 | List<T>* L_;
|
| 541 | int i_;
|
| 542 | };
|
| 543 |
|
| 544 | int max(List<int>* elems);
|
| 545 |
|
| 546 | #endif // MYCPP_GC_LIST_H
|